Evan Miller
Associate Professor of Biochemistry, Biophysics and Structural Biology*
*and of Chemistry
Research Interests
Research in the Miller lab operates at the interface of molecular and cell biology, synthetic chemistry, and neuroscience. We seek to exploit expertise in synthetic chemistry, probe design, imaging, molecular biology, and electrophysiology to create and deploy molecular tools for mapping brain activity. This multi-faceted approach engages a diverse group of researchers from differing scientific backgrounds, both expanding our understanding of basic chemical and biological processes and using these discoveries to investigate the brain.
Current Projects
We seek to address how the brain transmits information from cell to cell and develop tools to track neuronal activity with high spatial and temporal resolution. This approach to studying neuronal communication and information flux in the brain is two-pronged. First, we will develop activity-dependent neuronal tracer dyes for following signal transduction through neural circuits and within cells. Secondly, we will investigate new synthetic and genetically encoded indicators for optically monitoring voltage changes in neurons. Throughout, these approaches will be integrated into systems ranging from primary cell culture to tissue slices to whole animals in order to not only show-case the utility of our new tools, but also to explore new dimensions of neuronal communication and information transfer.
Selected Publications
Lazzari-Dean, J. R.; Gest, A. M. M.; Miller, E. W.; "Optical determination of absolute membrane potential." bioRxiv. 2019, Preprint. DOI: 10.1101/519736. [pdf] [html]
Boggess, S. C.; Gandhi, S. S.; Siemons, B. A.; Huebsch, N.; Healy, K. E.; Miller, E. W.; "New Molecular Scaffolds for Fluorescent Voltage Indicators." ChemRxiv. 2018, Preprint. DOI: 10.36434/chemrxiv.7338683.v1. [pdf] [html]
Grenier, V.; Daws, B. R.; Liu, P; Miller, E. W.; Spying on neuronal membrane potential with genetically tar-getable voltage indicators. J Am Chem Soc. 2019, ASAP. DOI: 10.1021/jacs.8b11997. [pdf] [html]
Kulkarni, R. U.; Vandenberghe, M.; Thunemann, M.; James, F.; Andreassen, O. A.; Djurovic, S.; Devor, A.; Miller, E. W.; In Vivo Two-Photon Voltage Imaging with Sulfonated Rhodamine Dyes. ACS Cent Sci. 2018, 4,1371-1378. DOI: 10.1021/acscentsci.8b00422. [pdf] [html]
Contractor, A. A. and Miller, E. W.; Imaging Ca2+ with a Fluorescent Rhodol. Biochemistry, 2018, 57, 237-40. DOI: 10.1021/acs.biochm.7b01050. [pdf] [html]
Liu, P; Grenier, V.; Hong, W.; Muller, V. R.; Miller, E. W.; "Fluorogenic Targeting of Voltage-Sensitive Dyes to Neurons", J Am Chem Soc, 2017, 139, 17334-40. DOI: 10.1021/jacs.7b07047. [pdf] [html]
Kulkarni, R. U.; Miller, E. W.; "Voltage Imaging: Pitfalls and Potential." Biochemistry, 2017, 56, 5171-7. DOI: 10.1021/acs.biochem.7b00490 [pdf] [html]
Deal, P. E., Kulkarni, R. U., Al-Abdullatif, S. H., Miller, E. W., Isomerically pure tetramethylrhodamine voltage reporters. J Am Chem Soc 2016, 138 (29), 9085-8. DOI: 10.1021/jacs.6b05672. [pdf] [html]
Huang, Y. L.; Walker, A. S.; Miller, E. W., A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing. J Am Chem Soc 2015, 137 (33), 10767-76. DOI: 10.1021/jacs.5b06644. [pdf] [html]
Photo credit: Mark Hanson at Mark Joseph Studios.
Last Updated 2019-01-18